Using energy systems analysis to compare cross-dimensional performance of biofuel production

Bio4Energy researchers meeting
16 October 2018, Umeå

Elisabeth Wetterlund, Energy Engineering, LTU
Comparing long and short term biofuel production pathways

- Swedish Energy Agency priorities
 - Short-term: refinery based
 - Long-term: gasification and/or biochemical
 - Existing infrastructure vs. efficiency

- Project funded by f3 and Energy Agency
 - Bio4Energy (LTU), IVL, RISE, Preem
Biofuel production pathways

<table>
<thead>
<tr>
<th>Liquefaction – hydrotreatment</th>
<th>Gasification – catalytic synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraft lignin</td>
<td></td>
</tr>
<tr>
<td>Case 1. MSL-HDO</td>
<td>Case 2. BLG</td>
</tr>
<tr>
<td>Lignin separation, depolymerisation, hydrotreatment</td>
<td>Black liquor gasification, catalytic synthesis</td>
</tr>
<tr>
<td>Forest residues</td>
<td></td>
</tr>
<tr>
<td>Case 3.</td>
<td>Case 4. BMG</td>
</tr>
<tr>
<td>Forest residues pyrolsysis, oil upgrading</td>
<td>Forest residues gasification, catalytic synthesis</td>
</tr>
<tr>
<td>a) HDO based, 3a Pyr-HDO</td>
<td></td>
</tr>
<tr>
<td>b) FCC based, 3b Pyr-FCC</td>
<td></td>
</tr>
<tr>
<td>c) Hydropyrolys, 3c Hydropyr</td>
<td></td>
</tr>
<tr>
<td>Gasoline, diesel</td>
<td>Methanol</td>
</tr>
</tbody>
</table>

Note:
- **MSL-HDO:** Milled softwood lignin hydrodeoxygenation
- **BLG:** Black liquor gasification
- **HDO:** Hydrodeoxygenation
- **FCC:** Fluid Catalytic Cracking
- **Pyr:** Pyrolysis
- **Hydropyr:** Hydropyrolys
- **HDO based, Pyr-HDO:** Hydrodeoxygenation based on pyrolysate
- **FCC based, Pyr-FCC:** Fluid Catalytic Cracking based on pyrolysate
- **Hydropyr:** Hydropyrolys based on pyrolysate
Approach

Best available data → "Grey box" modelling integrated prod. → Mass and energy balances → OPEX estimation

Energy market scenarios → Investment margin

Profitability assessment → Investment requirement

CAPEX estimations → RED (Renewable Energy Directive) System expansion

Product yield and system efficiency → Production potential → Technological maturity

Feedstock potentials → TRL estimations
Approach

- Best available data
 - "Grey box" modelling integrated prod.
 - Mass and energy balances
 - OPEX estimation
 - Investment margin
 - Energy market scenarios
 - Profitability assessment
 - Investment requirement
 - CAPEX estimations
 - RED (Renewable Energy Directive) System expansion
 - Product yield and system efficiency
 - Production potential
 - Technological maturity
 - CROSS-DIMENSIONAL PERFORMANCE
 - Investment requirement
 - Feedstock potentials
 - TRL estimations
Profitability assessment
1) production cost estimation

- Methanol/ethanol ~810 SEK/MWh
- HVO ~710 SEK/MWh

Specific investment margin

Biomass
Catalysts and chemicals
Electricty
Hydrogen
Fuel oil
Fossil Production

Total Prod. Costs
Profitability assessment
2) investment cost estimations

Andersson et al [10]
Jones et al [74]
Dutta et al [100]
Benjaminsson et al [69]
Jones et al [74]
Tan et al [31]
Meerman and Larson [103]
Hannula and Kurkela [86]
Udengaard et al [85]

BLG Pyr-HDO Pyr-HDO Pyr-FCC Pyr-FCC HydroPyr HydroPyr BMG BMG

Specific Investment Margin
Annual Spec. Invst. Cost

Nth of a kind (NOAK)

Recent CAPEX data from Biozin project (IH2)
~3500 MSEK for 120,000 m3/y
Profitability assessment

2) investment cost estimations

First of a kind (FOAK)

- Anheden et al [32]/Tews et al [99]
 - MSL-HDO, 34 MW
- Andersson et al [9]
 - BLG, 110 MW
- Meerman and Larson [103]
 - HydroPyr, 493 MW

recent CAPEX data from Biozin project (IH2)
~3500 MSEK for 120,000 m³/y
Carbon footprint

Calculated according to RED (Renewable Energy Directive)

70% reduction

- Fuel oil
- Wood chips
- Hydrogen
- Electricity
- Total

1 MSL-HDO 2 BLG 3a Pyr-HDO 3b Pyr-FCC 3c Hydropyr 4 BMG
Production potential – in Sweden

<table>
<thead>
<tr>
<th>Process</th>
<th>TWh biofuel per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MSL-HDO</td>
<td>10</td>
</tr>
<tr>
<td>2 BLG</td>
<td>25</td>
</tr>
<tr>
<td>3a Pyr-HDO</td>
<td>15</td>
</tr>
<tr>
<td>3b Pyr-FCC</td>
<td>10</td>
</tr>
<tr>
<td>3c Hydropyr</td>
<td>25</td>
</tr>
<tr>
<td>4 BMG</td>
<td>30</td>
</tr>
</tbody>
</table>

- FCC capacity limiting
- Black liquor limiting
- Forest residues limiting

BIO4ENERGY
Technology maturity

Weighted average TRL

<table>
<thead>
<tr>
<th></th>
<th>MSL-HDO</th>
<th>BLG</th>
<th>Pyr-HDO</th>
<th>Pyr-FCC</th>
<th>Hydropyr</th>
<th>BMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

"Weakest link" TRL

<table>
<thead>
<tr>
<th></th>
<th>MSL-HDO</th>
<th>BLG</th>
<th>Pyr-HDO</th>
<th>Pyr-FCC</th>
<th>Hydropyr</th>
<th>BMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3c</td>
<td>4</td>
</tr>
</tbody>
</table>
Cross-dimensional performance

<table>
<thead>
<tr>
<th></th>
<th>Energy efficiency</th>
<th>Profitability</th>
<th>Investment requirement</th>
<th>Prod. potential</th>
<th>Carbon footprint</th>
<th>Technology maturity</th>
</tr>
</thead>
</table>
| **1 MSL-HDO**
Lignin depol. + HDO
→ petrol/diesel | + | + | + | 0 | 0 | - |
| **2 BLG**
Black liquor gasification
→ methanol | + | + | 0/- | + | + | + |
| **3a Pyr-HDO**
Fast pyrolysis + HDO
→ petrol/diesel | 0 | - | - | + | - | 0 |
| **3b Pyr-FCC**
Fast pyrolysis + FCC-co-proc.
→ petrol/diesel | - | - | + | - | + | + |
| **3c Hydropyr**
Hydropyrolysis IH2
→ petrol/diesel | 0 | + | + | + | + | 0 |
| **4 BMG**
Forest residue gasification
→ methanol | 0 | + | + | + | + | + |
Cross-dimensional performance

<table>
<thead>
<tr>
<th>Process</th>
<th>Energy efficiency</th>
<th>Profitability</th>
<th>Investment requirem.</th>
<th>Prod. potential</th>
<th>Carbon footprint</th>
<th>Technology maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MSL-HDO</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Lignin depol. + HDO → petrol/diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 BLG</td>
<td>+</td>
<td>+</td>
<td>0/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Black liquor gasification → methanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a Pyr-HDO</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fast pyrolysis + HDO → petrol/diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b Pyr-FCC</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fast pyrolysis + FCC-co-proc. → petrol/diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c Hydropyr</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Hydropyrolysis IH2 → petrol/diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 BMG</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Forest residue gasification → methanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONGOING PROJECT

<table>
<thead>
<tr>
<th>F3/EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio4Energy/LTU, RISE, Södra Cell, Smurfit Kappa, SunCarbon, Preem</td>
</tr>
</tbody>
</table>

BIO4ENERGY
Renewable fuels and systems – Program conference
”Flera filer mot framtidens drivmedel”

• Energimyndigheten + f3
• Stockholm, 22 November 2018
• Including ”pitch and match” session
Want to know more?

elisabeth.wetterlund@ltu.se

erik.furusjo@ri.se