bio-based materials

  • A Biorefinery Research Environment

    tree_on_globeThe research environment Bio4Energy aims to create highly efficient and environmentally-sound biorefinery processes—including methods and tools for making products such as biofuels, "green" chemicals and new bio-based materials—which draw on biomass sourced from forests or organic waste as a raw material. 

    Raw materials, or "feedstock", should be used as completely and as efficiently as possible at all stages of the biorefinery value chain. This is taken to mean from the designing or planting of the first seed for growing a tree, through to the development of consumer products that can be commercialised and add value for their soundness in terms of economic, environmental and social impact. 

    Some of the things Bio4Energy aims to do differently are to use all parts of the tree and to recycle or recover by-products that typically go to waste in mainstream forestry operations. Some of the Bio4Energy scientists—there are more than 220 of them—are developing processes by which to turn such residual streams into energy, high-value specialty chemicals or other bio-based products.

    Research organisation

    At the core of Bio4Energy are two process platforms. They are Bio4Energy Thermochemical Conversion Technologiesand Bio4Energy Biopolymers and Biochemical Conversion Technologies. Researchers on the two research and development (R&D) platforms turn out new or improved processes for making advanced biofuels, such as dimethyl ether or second-generation bioethanol; new bio-based materials or "green" chemicals which, in turn, may be used as building blocks in bio-based products. These may be plastics or pharmaceuticals, coatings, liners, adhesives or a number of other things; all based on woody feedstock or organic waste as a raw material.

    The research environment Bio4Energy also has a team that studies and develops the woody feedstock. Simply put, researchers on the R&D platform Bio4Energy Feedstock, hosted by Umeå Plant Science Centre, make "better" trees. Since Bio4Energy is based in Scandinavia, a large part of which sits in the boreal belt, the foremost feedstock for the technology processes being developed derives from spruce and pine trees, or residue from industrial processes in which they are used, such as pulping. However, poplar or hybrid aspen trees are also being studied and the question put whether these tree species may be grown successfully on northern latitudes. A part of the Materials and Bioscience branch of the research institute RISE is part of the platform Bio4Energy Feedstock and has developed an encompassing database by which genetic data may be cross-read with data on mechanical characteristics of trees: the Bio4Energy Traits Database.

    The R&D platforms Bio4Energy Wood Pre-processing and Bio4Energy Chemical Catalysis and Separation Technologies, for their part, are there to facilitate the journey that the carbohydrate and aromatic content of the biomass must make for it to be converted to products, as well as a cost-competitive alternative to petrochemicals. Seemingly small inventions in these platforms may make all the difference in terms of the efficiency of the thermal or biochemical conversion of biomass to fuels or chemicals. The task then of the platform Bio4Energy System Analysis and Bioeconomyis to make sure various processes, such as in a biorefinery, function with maximal efficiency in terms of energy use and as a unit. In a biorefinery a number of processes and their stream of primary and side products have to function efficiently together. This is Bio4Energy's most recent R&D platform and its members also carry out integrated market analyses and environmental system analyses.

    Finally the task of the platform Bio4Energy Environment and Nutrient Recyclingis to check and make sure that the methods and tools being developed by the other six platforms have a low or no detrimental impact on the environment, with the aim of 'closing the loop' in terms of only inputting renewable raw materials and limiting noxious emissions to air, ground and water to a strict minimum. In the first programme period of Bio4Energy, 2010-2016, the platform's dual foci were placed on system analysis assessing mainly climate change-inducing emissions of bio-based processes, on the one hand, and on limiting organic emissions at source, on the other. In Bio4Energy's second programme period, 2017-2021, the perspective has been expanded to encompass resource efficiency along the value chain of biorefinery products and calculating the cost of various options for making sure biorefinery operations are sustainable.

    One vision, many partners

    A large number of industrial operators have endorsed Bio4Energy and are part of a Bio4Energy Industrial Network. The scientists cooperate with them to develop advanced biofuels, "green" chemicals or other bio-based products, such as new materials made using nanotechnology. Another strand of work focuses on eliminating noxious emission or undesirable residues from existing industrial processes. For instance, methods are being developed to convert biomass ashes and sludge into renewable energy, liming materials or low-polluting fertilizers. In some cases, high-temperature processes in combination with filters that capture particulate matter and heavy metals will be used to rid the biorefinery process of toxic organic compounds.

    Another promising line of research in Bio4Energy targets the capture and recycling of carbon dioxide (CO2), the international reference for greenhouse gases. New technologies for CO2capture and reuse that rely on catalytic conversion are being invented. When it comes to development, Bio4Energy researchers have realised inventions which has led to new pilot facilities being installed (just off the campus of the lead organisation Umeå University) for the pre-treatment of biomass by roasting (torrefaction), at a BTX Fornax facility. Two other groups have made ample use of Sweden's only demonstration unit for bioethanol production, the Biorefinery Demonstration Plantat Örnsköldsvik, Sweden. Yet others collaborate with Swedish pellet industry, characterising and modulating biomass materials at the Biomass Technology Centrewhich hosts pilot facilities for the separation and fractionation of biomass at SLU Röbäcksdalen, at Umeå, Sweden. Further north, at Piteå, Bio4Energy researchers are an integral part of a team tasked with trialling, perfecting and upscaling production of biofuels made via the gasification route. At the LTU Green Fuelscentre, "ultra" low-polluting dimethyl ether (or bioDME) fuel is made from a residual product of the pulping process, black liquor, using entrained-flow gasification technology. Part of the same industrial site, the RISE Energy Technology Center has facilities for optimising gasification and pyrolysis processes and serves as link between academia and industry.

    A research 'environment'

    Bio4Energy is not only a research programme, but also a research environment. At its core are three Swedish universities recognised as national leaders in education and research on bioenergy, biotechnology and forest management. They are Umeå University, Luleå University of Technologyand the Swedish University of Agricultural Sciences at Umeå. A large number of Sweden-based firms and a handful of innovation and research institutes have signed up to become partners. Of these RISE (groups in the Materials and Bioscience and Bioeconomy branches, respectively) and the ETC Energy Technology Center are founding members of Bio4Energy. RISE Processum and Piteå Science Park, both of which organisations are close to or representing industry, are the Strategic Partners of Bio4Energy. Several other cooperation partners could be mentioned here.

    Moreover, scientific collaboration is underway with research organisations or groups in Europe as well as in the U.S.A., Australia, Canada, China, Korea, Japan, Russia, Taiwan, Kenya, Tanzania, Zimbabwe, South Africa and other countries. The Bio4Energy research programme is committed to the sustainable use of natural resources and aware of the European Union's efforts to combat climate change by lessening the reliance on fossil fuels and increasing the use of renewable energy. In particular, Bio4Energy works to align its practices on advice issued by the European Technology Platforms devoted to forests, plants and biofuels. Since early 2014, Bio4Energy is a member of the European Bio-based Industries' Consortium, which has seen the birth of a Bio-based Industries' Joint Undertaking (BBI JU) as a part of the European Union's Joint Technology Initiatives' process. In Sweden, the programme part of Bio4Energy is a member of BioInnovationa cross-sectoral programme designed to promote bio-based innovationand of the Swedish Centre for Renewable Transportation Fuels.

    Bio4Energy aims to be a driving force for innovation and thereby the creation of small and medium-sized enterprises. It has set up its own Graduate School on the Innovative Use of Biomass so as to provide post-secondary training for a new generation of academic researchers, to develop scientific expertise in bioenergy, bio-based chemicals and, as a separate strand, biotechnology. At Umeå University, a new undergraduate training programme was unveiled at the end of 2013 and is designed to train future engineers in Bioresource Technology.

    Bio4Energy was born in late 2009, when the Swedish government agreed to offer a constellation of 44 mostly Swedish biorefinery researchers its support for developing over five years a Strategic Research Environment, tasked with drawing together some of the best brains in bioenergy and biorefinery research and development, as well as create links and collaboration within the academic cluster and cooperation with industrial actors.

    The government's generous support, topped up with contributions from the member universities and external funds won as a result of it, have allowed Bio4Energy to expand from the initial 44 to 235 researchers*(in March 2014 - and hovering between 235 and 250 members in 2015), originating from a number of countries but affiliated with one or more of Bio4Energy's founding member organisations. In 2009, more than 20 industrial companies pledged their support for the creation of Bio4Energy by signing letters of endorsement.

    For more information: See Bio4Energy's Clean-Tech Article (available also from the drop-down menu of the 'Research' heading) or an article in Swedishby Umeå University Information Services. As of June 2015, Bio4Energy has its own news page in Swedish on the Umeå University website and a programme page on the Luleå University of Technology website.

    Press and mediaare most welcome to contact Bio4Energy Communications by e-mail to: This email address is being protected from spambots. You need JavaScript enabled to view it. or by phone at: +46 90 786 5247 (weekdays).

    *In March 2016 Bio4Energy had approximately 220 researchers.

    --
    Hereunder is the standard sentence which researchers may put towards the end of their scientific articles to acknowledge or thank Bio4Energy for its support:

    We thank Bio4Energy, a Strategic Research Environment appointed by the Swedish government, for supporting this work.
    --

  • Bio4Energy Graduate to Bioethanol Developer SEKAB

    WilfredVermerris MonicaNormark PhotobyAnnaStromMonica Normark, pictured at her thesis defence with Wilfred Vermerris, has taken up a position at Bio4Energy industrial partner SEKAB. Photo by Bio4Energy.Bio4Energy graduate and research engineer This email address is being protected from spambots. You need JavaScript enabled to view it., previously with Bio4Energy’s group of experts on biochemical conversion technologies and industrial biotechnology, has scored a position with bioethanol developer SEKAB in northern Sweden, where she will be working to develop one of the company’s flagship inventions: the CelluAPP™.

    “Monica Normark will be a great asset in our work. The CelluAPP™ makes it possible for companies to turn residual materials into marketable products. It’s a win-win situation for business and the environment”, said SEKAB E-Technology head of biorefinery technology This email address is being protected from spambots. You need JavaScript enabled to view it. in a press release.

    Normark’s previous professional home, professor This email address is being protected from spambots. You need JavaScript enabled to view it.’s group at Umeå University and the R&D platform Bio4Energy Biopolymers and Biochemical Conversion Technologies, have a long history of cooperating with—including handing down new inventions and patents to—SEKAB, which small firm develops bioethanol and “green” chemicals at the Biorefinery Demonstration Plant of the Domsjö industrial cluster, Örnsköldsvik, and is part of the Bio4Energy Industrial Network.
  • Bio4Energy Graduates Who Move on to Industry: Danil Korelskiy to Beckers Group

    DanilKorelskiy Beckers webDanil Korelskiy, a former Bio4Energy student specilising in membrane technology, has moved on to work with the multinational Beckers Group, at Beckers Industrial Coatings in Stockholm. Photo by courtesy of Danil Korelskiy.A number of Bio4Energy graduates—former students at the PhD or postdoctoral level—have moved on to work in industry at the end of their training. Some have gone to small- and medium-sized companies, such as SEKAB, or to larger companies or groups, like BillerudKorsnäs. Conversely, there are examples of PIs who have moved from employment at a commercial company to join the ranks of Bio4Energy researchers, or from the academy to join a research institute.

    A shining example of the first is This email address is being protected from spambots. You need JavaScript enabled to view it., until recently with the research and development (R&D) platform Bio4Energy Chemical Catalysis and Separation Technologies at the Luleå University of Technology(LTU) in northern Sweden. This month, he took up employment with Beckers Industrial Coatings, as a Technical R&D Manager for Coil Coatings for North Europe. He is based at Stockholm, the Swedish capital.

    With a background in Chemical Engineering, Russian-born Korelskiy has been specialising in membrane technology. The Beckers Group, for its part, say they lead the world when it comes to industrially-designed and pre-painted coatings applied to metal sheets and composite panels for roofs or domestic appliances, together with a handful of North American and Asian companies, according to the group's website and Korelskiy.

  • Bio4Energy Results on Large-scale Hydrogen Production Part of IVA 'Progress in Research & Technology 2017' Speech - Video

    In August, Bio4Energy researchers and partners unveiled a scheme that could enable large-scale production of hydrogen based on renewable electricity. This month, the director of the Royal Swedish Academy of Engineering Sciences (IVA), Björn O. Nilsson, acknowledged it his annual speech Progress in Research and Technology 2017.

    He did so approximately 25.15 minutes into the speech. We publish it here, with permission. Bio4Energy wants to thank Pär Rönnberg, writer at IVA, for coordinating contacts with us.

    Årets framsteg inom forskning och teknik 2017 from IVA on Vimeo. Bio4Energy results on a new catalyst for large-scale hydrogen production part of IVA president speech on Best Research of 2017. Video published with permission.

  • Bio4Energy Thesis Defence: Characterisation and Densification of Carbonised Lignocellulosic Biomass, Umeå, Sweden

    Bio4Energy PhD student researcher Magnus Rudolfsson will be defending his thesis Characterisation and Densification of Carbonised Lignocellulosic Biomass.

    Venue: Swedish University of Agricultural Sciences at Umeå. Room: Björken.

  • Bio4Energy Thesis Defence: Mixed Fuels Composed of Household Waste Wood, Umeå, Sweden

  • Bio4Energy Thesis Defence: Mixed fuels composed of household waste, waste wood, Umeå, Sweden

    PhD student Mar Edo Giménez will be defending her thesis Mixed fuels composed of household waste and waste wood - Characterisation, combustion behaviour and potential emissions

    Time and place: 9 a.m. at Umeå University, KBC Building, room KB.E3.03
  • Bio4Energy Thesis Defence: Three-dimensional Structured Carbon Foams, Umeå, Sweden

    Bio4Energy PhD student at Umeå University Tung Ngoc Pham will be defending his thesis Three-dimensional structured carbon foam: Synthesis and Applications Monday 14 November at 1 p.m. in room KB.E3.01, KBC Building of Umeå University, Umeå, Sweden. 
  • BioInnovation General Assembly, Stockholm, Sweden

    BioInnovation General Assembly, Stockholm, Sweden
  • Clean-burning Cooking Solutions, Electricity, Being Developed for Africa

    The world needs clean-burning stoves for use in countryside households in third world, the Umeå Renewable Energy Meeting (UREM) 2016heard today. Many such households, for instance in Sub-Saharan Africa, rely on burning of untreated wood or agricultural residues inside the home and in simple appliances with few or no checks on polluting emissions.

    UREM-2016-Feb24-1
    UREM-2016-Feb24-10
    UREM-2016-Feb24-2
    UREM-2016-Feb24-3
    UREM-2016-Feb24-4
    UREM-2016-Feb24-5
    UREM-2016-Feb24-6
    UREM-2016-Feb24-7
    UREM-2016-Feb24-8
    UREM-2016-Feb24-9
    01/10 
    start stop bwd fwd

    Although international initiatives such as the Global Cookstove Alliance have made great strides in the right direction, the effect of emissions on human health of particulate matter and soot are still not well understood, Bio4Energy researcher This email address is being protected from spambots. You need JavaScript enabled to view it. told the UREM conference. Boman leads a cross-disciplinary project in which Bio4Energy researchers from Umeå University and the Swedish University of Agricultural Sciences collaborate with the Stockholm Environment Institute and African non-governmental organisations, of which the World Agroforestry Centre in Kenya, to evaluate current so-called clean-burning cookstoves and develop medium-sized facilities for electricity production in the Kenyan countryside.

  • EPNOE Polysaccharide Conference, Jena, Germany

    EPNOE International Polysaccharide Conference

    Who to contact

    Conventus Congressmanagement & Marketing GmbH Carl-Pulfrich-Straße 1 07745 Jena, Germany www.conventus.de

    Project team Ann-Kathrin Schulte Phone +49 3641 31 16-363 Fax +49 3641 31 16-243 

    Registration Mandy Wagner Phone +49 3641 31 16-160

    Abstracts Stefan Regge Phone +49 3641 31 16-161

  • EU Project Mobile Flip Final Seminar, Umeå, Sweden

  • European Biomass Conference & Exhibition, Amsterdam, the Netherlands

    During the conference, Bio4Energy researcher Carlos Martín will be giving a talk entitled, Evaluation of the potential of cassava stems for ethanol production.
  • Improved Biofuel Production Key Theme in Bio4Energy's New Strategic Projects

    Bio4energy cmykFive research projects deemed capable of promoting the strategic development of Bio4Energy, and the type of research and development its members carry out, have been selected for funding in the Bio4Energy’s second programme period. The projects are deemed to be beyond state of the art and to propose a new direction of research within the field of biorefinery based on wood or organic waste. Their project leaders, representing four of the seven Bio4Energy Research and Development Platforms, will be outlining their respective projects at a conference 25 October at Umeå, Sweden. For more, see the Bio4Energy Newsletter of this autumn. Here we list the 2016 Bio4Energy Strategic Projects.

    • Process Improvements for Methanol Production via Catalytic Biomass Gasification
    • Developing Neoteric Ionic Liquids for Enhancing Biomass Gasification to Produce Purified Biosyngas
    • Supercapacitors and High-energy/density Electrodes Based on Carbon Nanofibers from Lignin and Biochar
    • Nanocellulose Membranes and Adsorbents for Gas Separations and Ultrafiltration
    • Recirculation of Wood Ash in Boreal Catchments, Role of Fe-organic Carbon Aggregates and Processes along the Soil Solution Flow Paths
  • Integrated Biogas, New Material Production Focus of New Project

    Forestry residue Photo by AnnaStromBio4Energy researchers will create processes for integrated biogas production from woody feedstock with lignin removal and re-use in different materials. Photo by Anna Strom.Bio4Energy scientists have set out to create a completely new biorefinery value chain, by marrying the production of methane biogas and bio coal based on the wood polymer lignin, in a multi-annual project run by researchers at Umeå University (UmU), Luleå University of Technology (LTU) and their industrial partners Erebia, Blatraden Miljötekniskt center and the forestry company Sveaskog. The Swedish Research Council Formas granted the project funds under its latest call for research proposals on Research for the Transition to a Bio-based Economy, announced last week.

    Projects by Bio4Energy researchers on the integration of power production with biorefinery operations and finding the best source of wood for the production of nanocellulose also were granted funds in the Bio-based Economy call.

    "We are so very happy to be able to carry out these projects. Ours could not have come about if it weren't for the contacts we have had through Bio4Energy and its Researchers' Meetings", said This email address is being protected from spambots. You need JavaScript enabled to view it., vice programme manager in Bio4Energy and a group leader at the LTU.

    Professor Rova is part of the project Integrated Conversion of Forest Residues into Methane and Carbonised Bio-based Materials (INFORMAT). So are a number of other Bio4Energy researchers and together they will attempt to lay the foundation for a completely new value chain in biorefinery by integrating the production of methane biogas from wood and woody residue with lignin extraction and re-use. That is, the scientists will separate out the lignin part of the wood polymer complex at an early stage of the process and use it to make bio coal by subjecting the lignin fraction to high temperature treatment, using hydrothermal carbonisation technology.
  • International Conference on Renewable Resources & Biorefineries, Wroclaw, Poland

    13th International Conference on Renewable Resources & Biorefineries
  • LCA Appropriate Tool for Assessing Environmental Impact of Forest Products, But Beware of Uncertainties

    Frida Royne Photo by FRSystem analysis student in Bio4Energy Frida Røyne will be defending her PhD thesis on LCA and forest products 22 April at Umeå, Sweden. Photo by courtesy of Frida Røyne.A well-known method for assessing the environmental and climate change impacts of products over their life-cycle is Life Cycle Assessment (LCA). Forest products are no exception in this respect. However, while there has been rising interest in applying LCA to check the impact of forest products designed to replace similar ones refined from fossil oil, in the last decade a discussion has been ongoing about how to account for greenhouse gas emissions and from which sources.

    LCA is one of the most commonly used methods for environmental life-cycle assessments, but the correctness of an assessment's outcome relies heavily on the researcher's choice of method in designing his or her study, as well as the availability of relevant input data.

    Tomorrow, a Bio4Energy student who has dwelled into both these issues will be defending her thesis on Exploring the Relevance of Uncertainty in the Life Cycle Assessment of Forest Products.

    Part of the new research and development platform Bio4Energy System Analysis and Bioeconomy, This email address is being protected from spambots. You need JavaScript enabled to view it. of Umeå University used recent cases studies—such as a "Forest Chemistry" project in which chemical and forestry industry in Sweden joined forces to try to assess whether a chemical industry cluster at Stenungsund could feasibly replace part of its fossil raw material base with forest-sourced feedstock—to draw conclusions as to whether LCA is a suitable method by which to assess forest products. However, being a generalist and employed by the SP Technical Research Institute of Sweden, Røyne also was interested in looking at the development of LCA as a method of systems analysis, its potential flaws and the way in which these were being communicated.

    Her chief conclusion is that LCA is indeed an appropriate method for assessing the environmental and climate change impact of forest product systems, but that the use of additional methods—such as life-cycle management or scenario analysis—may be warranted and that, in each individual case, researchers have to ask themselves whether there are uncertainties and discuss these in their studies.
  • Mixed Biofuel Could Help Put Refuse to Use, Reduce Harmful Emissions

    Waste collage Pic cred MarEdoAre mixed combustion fuels, based on different types of waste and designed for specific purposes, a thing of the future? Photos by courtesy of Mar Edo.In Sweden, toxic emissions to air from incineration of domestically-sourced municipal solid waste are generally well controlled. Moreover, in accordance with the waste hierarchy adopted by the European Union in its 2008 Waste Framework Directive, re-use and recycling are favoured above recovery. Sweden thus manages to do away with about half of the total 4.4 million tonnes of waste generated annually by its households, institutions and commercial actors before the incineration option is put to use.

    However, heat recovery and electricity generation following waste incineration has become a business and the country has the capacity to burn more household waste than the 2.3 million tonnes that its citizens supply. In 2015 alone, 1.3 million tonnes of waste were imported, mainly from other European countries, and used for such waste-to-energy recovery. And when waste becomes an industry in itself, there are bound to be actors out there thinking about how to make it cleaner and finding new uses for the refuse by integrating different technologies.

    For instance, staff at Vafab Miljö, a Swedish regional waste utility, have been working with Bio4Energy researchers to find ways to blend household waste and recovered wood, learning about the mixtures behaviour as a feedstock by studying its properties and testing various mechanical pre-treatments and turned the mixed waste into fuel. In the project, carried out in collaboration with Bio4Energy partner Umeå University's Industrial Doctoral School, PhD student This email address is being protected from spambots. You need JavaScript enabled to view it. has evaluated a range of fuel blends.
  • New Leader for Bio4Energy's Environmental Researchers

    StinaJansson platform lead Photo by AnnaStrom copyAssociate professor Stina Jansson is a new leader for the R&D platform Bio4Energy Environment and Nutrient Recycling. Photo by Bio4Energy.The research and development platform Bio4Energy Environment and Nutrient Recyclinghas a new leader. This email address is being protected from spambots. You need JavaScript enabled to view it., associate professor at Umeå University(UmU), will be taking over the platform leadership from Dan Boström, who has seen his workload increase substantially since becoming Bio4Energy programme manager in February last year. Boström and Jansson will be sharing the leadership over the summer, following which Jansson will shoulder the role fully from 1 September 2017.

    “We are pleased to announce that Stina is a new platform leader in Bio4Energy. She is a young researcher with a great record as an environmental chemist. She is also at a very progressive stage of her career. We are glad that she has accepted to take on the role”, said Boström, professor at UmU, adding that the Bio4Energy Board had passed the decision this month to promote Jansson to the post of platform leader.

    Part of the research environment since its launch in 2010, Jansson was a postgraduate student in the group of the former Bio4Energy programme manager, professor emeritus Stellan Marklund. Her area of expertise includes research to check the environmental credentials of thermal processes for the conversion of biomass.

  • New Neutron-based Technology Set to Improve Process Control in Biorefineries, Bioenergy Operations

    TL MT SL AS11116Bio4Energy researchers Torbjörn Lestander (left), Mikael Thyrel and Sylvia Larsson won funding for a test-bed pilot which technology is expected to be essential for the efficient operation of biorefineries and biomass combustion facilities. Photo by Bio4Energy.

    An instrument that can help biorefinery industry and bioenergy utilities detect and remove or neutralise elements that scupper the process or pollute the environment directly as the biomass is fed into the conversion or combustion process. It sounds like every industrial operator's dream, does it not?

    For operators in northern Sweden it could come true within a few years, thanks to funding just granted to Bio4Energy researchers for the purchase of a new instrument drawing on neutron technology for the rapid and advanced online characterisation of woody materials, biomass ash and organic waste. 

    "The instrument allows for a considerable advancement when it comes to technology since the neutrons have a depth of penetration of tens of centimetres into the test material, which opens up the possibility rapidly to characterise large volumes of heterogeneous material", the researchers from the Swedish University of Agricultural Sciences(SLU) say in their application to the funding provider, the Kempe Foundations.

    "This means that the technology can be placed on a conveyor belt which makes it a true online technique with a large potential to realise the necessary characterisation needed for process control in resource-efficient and flexible biorefineries of the future", they go on.