biomass energy

  • Seminar on Bio-based Feedstock: 'Make No Mistake, There is Still Momentum for Building the Bioeconomy'

    Is the efficient and sustainable biorefinery of the future challenged by the low price of oil and gas and the lack of a political framework that encourages bio-based production in the long term? Yes. Have actors in the sector shut up shop while waiting for conditions to be right for launching the bioeconomy? Not at all.

    Judging from developments in Sweden, a precursor country in terms of biorefinery development based on woody materials and organic waste, great strides are being made in industry and academia to pave the way for a transition from an economy heavily reliant fossil fuels and materials based on petrochemicals, towards a bioeconomy. A few such developments were highlighted yesterday at a seminar at Umeå, in northern Sweden, on Feedstock for Sustainable Biofuel Production, by the Swedish Knowledge Centre for Renewable Transportation Fuels (f3 Centre), the research environment Bio4Energy and the Swedish University of Agricultural Sciences

    Anders-Hultgren-SCA
    Bioen-100-yrs-FF
    Bioen-use-SE
    Constraints-drivers
    Future-FF
    Johanna-Mossberg-f3
    MagnusHertzberg_SweTreeTechnologies
    Phiip-Peck-LU
    SCA-prod-plans
    STT-Field-Trials
    01/10 
    start stop bwd fwd

  • Systems' Perspectives on Bioresources

    Bio4Energy studentsltu AnnaStromExtent and credits: 7.5 ECTS             


    Course coordinator: This email address is being protected from spambots. You need JavaScript enabled to view it. 


    Objectives

    On completion of the course, students will:

    • Be able to understand how to apply a systems' perspective on their own research;

    • Have gained insights into the current global energy and environmental challenges; 

    • Have gained insights into the rational of sustainability; 

    • Have awareness of tools and methods used for environmental, technical and economic systems analysis. 

    Dates and locations

    Autumn 2017:

    9-13 October, Luleå, Sweden: Lectures and workshops;

    Followed by independent work on a project assignment.


    Contents

    The course consists of:

    • Lectures (on sustainability issues, systems analysis approaches and tools) and workshops;

    • Lectures on essential subjects for large-scale biorefinery or bioenergy research and;

    • A project assignment, where the students identify suitable systems analysis tools or methods to be applied to their own research. The outcome will be a draft research proposal, a journal or conference manuscript or a chapter of a thesis.

    Application and prerequisites

    To apply for enrolment in Biorefinery Pilot Research, mail to This email address is being protected from spambots. You need JavaScript enabled to view it..

    For enquiries regarding the course content, contact This email address is being protected from spambots. You need JavaScript enabled to view it.

    Late application? Contact This email address is being protected from spambots. You need JavaScript enabled to view it..
  • Thermal Treatment of Sludge Could Boost Phosphorus Resources, Solve Waste Problem

    MarcusOhman 2916rsBio4Energy vice programme manager Marcus Öhman will develop a new efficient method for phosphorous recovery from waste sludge, together with colleagues in Bio4Energy. Photo by courtesy of Marcus Öhman.

    Bio4Energy researchers are developing a new efficient method for phosphorus recovery using thermal treatment of sludge from municipal waste treatment facilities or pulp and paper operations. Once implemented, the scheme is expected to provide for a reduction of the risk of contamination of food and feed crops by heavy metals—as well as reduce the problem of how to dispose of toxic waste sludge—and produce an economic benefit for industry. Research leader This email address is being protected from spambots. You need JavaScript enabled to view it. said that the technology could be ready for industrial uptake within a decade.

    "We could be at the stage of industrial demonstration of the technology in five years. Then a certain amount of time would be needed for classification of the product. We know that it would be economically beneficial for some [existing] bioenergy operations which use fluid-bed technology to start co-firing dried sludge with [fuel wood]", according to Öhman, who is a professor in Energy Engineering at the Luleå University of Technology(LTU).

    The research and development project, which is the fruit of collaboration between Bio4Energy researchers at LTU and Umeå University, has been several years in the making. Now it can go ahead thanks to a recently announced multiannual grant from the Swedish Research Council Formas.

    Phosphorus is an essential nutrient for plant growth and thus for food production. It is extracted by mining in a handful of countries worldwide and its maximum production is expected to peak in the year 2030. After that predictions range from 50 to several hundred years before it runs out. Research is ongoing on a handful of methods for recycling the mineral from sludge, but which either perform inadequately (when it comes to removal of toxic heavy metals present in sludge or to phosphorus recovery rates) or are inhibitively expensive, to believe Öhman.

  • Thesis defence: On dioxin formation in thermochemical conversion of biomass, Umeå, Sweden

    Qiuju Gao, kemiska institutionen, försvarar sin avhandling med svensk titel Bildning av dioxiner vid termokemisk omvandling av biomassa.

    Engelsk titel: On dioxin formation in thermochemical conversion of biomass.

    Fakultetsopponent: Bogdan Dlugogorski professor, School of Engineering and Information, Technology, Murdoch University.

    Huvudhandledare: Stina Jansson.

    2016-04-29 kl. 10:00
  • This Is Bio4Energy

    Bio4Energy wants to thank its members, stakeholders and funders for its five first years of building a research environment that links up key academic and business organisations actively trying to promote biorefinery—the invention and production of advanced biofuels, bio-based chemicals and materials from woody biomass or organic waste.

    To do so, and to spread the word further afield, Bio4Energy would like to show you two short films that are an attempt to summarise who we are and what we do.

    In film one, the Bio4Energy programme manager takes viewers by the hand and describes the fundaments of the research environment. We also step into the working world of three Bio4Energy Research and Development Platforms: Feedstock, Pretreatment and Fractionation, as well as Catalysis and Separation. We visit the scientists’ greenhouse were hybrid aspen plants are grown to make better trees for bio-based production and Sweden's only pilot plant for the roasting of biomass—torrefaction—for the ease of handling and converting woody and starch-based biomass into fuels and chemicals.

    Bio4Energy - A Biorefinery Research Environment from Bio4Energy on Vimeo.


    In film two, we meet the coordinator of the Bio4Energy Graduate School who says students interested in biorefinery based on wood or organic waste will get a "unique" experience in the Bio4Energy Graduate School. We hear about the work on Bio4Energy's "process" platforms: The Bio4Energy Thermochemical and Biochemical Platform, respectively; and tour the thermal conversion whizzes' labs at Umeå University.

    Bio4Energy - Biorefinery Research & Education from Bio4Energy on Vimeo.

    Since June 2015, Bio4Energy has a new page in the Swedish-language section of the Umeå University website. From there, most of Bio4Energy's press releases in Swedish may be accessed. There are also an interview with the Bio4Energy programme manager for the years 2010-2016 and general information about Bio4Energy. An even more recent interviewcan be accessed on page 9 and 10 of the latest issue of Tänk magazine in which This email address is being protected from spambots. You need JavaScript enabled to view it. predicts that societies will have become bio-based in the year of 2065.

    Bio4Energy has gone from being a constellation of 44 enthusiastic researchers in 2009, to becoming a full-blown research environment with about 240 members across three universities, four research institutes and with a network of industrial partners in Sweden and beyond.

    Thank you to our sponsors, members and stakeholders for believing in Bio4Energy!

  • Transformation of Sweden's Energy System Discussed at Luleå in August

    Akkats power station Credit LTUAkkats hydro power station far north in Sweden at Jokkmokk, owned by state-run energy utility Vattenfall. Photo by courtesy of Vattenfall AB.Bio4Energy researchers and industrial partners are calling on energy stakeholders—representatives of Swedish authorities, business and industry, research institutes and academics—to join them 23-24 Augustat Luleå, Sweden, for talks on how far the country has come in implementing a sustainable energy system.

    Summarising the economic, social and environmental side of things, as well as discussing ways forward, does not sound like an easy task to accomplish in two days, but conference coordinator This email address is being protected from spambots. You need JavaScript enabled to view it. believes it can be done.

    "The transformation of the Swedish energy system is a great undertaking and requires a broad start. There will be 50 research presentations and a number of keynote [addresses] by people from industry and authorities and politicians. People can expect to hear about systems' studies, analyses of political support measures, how to promote biofuels and the development of markets and trade", according to Lundmark, who is a professor at the Luleå University of Technology.

    Ibrahim Balyan, Sweden's minister for energy, and Tomas Kåberger, Swedish energy profile and professor at Chalmers University of Technology, are posted as keynote speakers on the website of the Swedish Association for Energy Economics Conference 2016, and the event is subtitled 'Current and future challenges of energy systems in Sweden and neighbouring countries'.
  • Umeå Renewable Energy Meeting 2016, Umeå, Sweden