"green" chemicals

  • A Biorefinery Research Environment

    tree_on_globeThe research environment Bio4Energy aims to create highly efficient and environmentally-sound biorefinery processes—including methods and tools for making products such as biofuels, "green" chemicals and new bio-based materials—which draw on biomass sourced from forests or organic waste as a raw material. 

    Raw materials, or "feedstock", should be used as completely and as efficiently as possible at all stages of the biorefinery value chain. This is taken to mean from the designing or planting of the first seed for growing a tree, through to the development of consumer products that can be commercialised and add value for their soundness in terms of economic, environmental and social impact. 

    Some of the things Bio4Energy aims to do differently are to use all parts of the tree and to recycle or recover by-products that typically go to waste in mainstream forestry operations. Some of the Bio4Energy scientists—there are more than 220 of them—are developing processes by which to turn such residual streams into energy, high-value specialty chemicals or other bio-based products.

    Research organisation

    At the core of Bio4Energy are two process platforms. They are Bio4Energy Thermochemical Conversion Technologiesand Bio4Energy Biopolymers and Biochemical Conversion Technologies. Researchers on the two research and development (R&D) platforms turn out new or improved processes for making advanced biofuels, such as dimethyl ether or second-generation bioethanol; new bio-based materials or "green" chemicals which, in turn, may be used as building blocks in bio-based products. These may be plastics or pharmaceuticals, coatings, liners, adhesives or a number of other things; all based on woody feedstock or organic waste as a raw material.

    The research environment Bio4Energy also has a team that studies and develops the woody feedstock. Simply put, researchers on the R&D platform Bio4Energy Feedstock, hosted by Umeå Plant Science Centre, make "better" trees. Since Bio4Energy is based in Scandinavia, a large part of which sits in the boreal belt, the foremost feedstock for the technology processes being developed derives from spruce and pine trees, or residue from industrial processes in which they are used, such as pulping. However, poplar or hybrid aspen trees are also being studied and the question put whether these tree species may be grown successfully on northern latitudes. A part of the Materials and Bioscience branch of the research institute RISE is part of the platform Bio4Energy Feedstock and has developed an encompassing database by which genetic data may be cross-read with data on mechanical characteristics of trees: the Bio4Energy Traits Database.

    The R&D platforms Bio4Energy Wood Pre-processing and Bio4Energy Chemical Catalysis and Separation Technologies, for their part, are there to facilitate the journey that the carbohydrate and aromatic content of the biomass must make for it to be converted to products, as well as a cost-competitive alternative to petrochemicals. Seemingly small inventions in these platforms may make all the difference in terms of the efficiency of the thermal or biochemical conversion of biomass to fuels or chemicals. The task then of the platform Bio4Energy System Analysis and Bioeconomyis to make sure various processes, such as in a biorefinery, function with maximal efficiency in terms of energy use and as a unit. In a biorefinery a number of processes and their stream of primary and side products have to function efficiently together. This is Bio4Energy's most recent R&D platform and its members also carry out integrated market analyses and environmental system analyses.

    Finally the task of the platform Bio4Energy Environment and Nutrient Recyclingis to check and make sure that the methods and tools being developed by the other six platforms have a low or no detrimental impact on the environment, with the aim of 'closing the loop' in terms of only inputting renewable raw materials and limiting noxious emissions to air, ground and water to a strict minimum. In the first programme period of Bio4Energy, 2010-2016, the platform's dual foci were placed on system analysis assessing mainly climate change-inducing emissions of bio-based processes, on the one hand, and on limiting organic emissions at source, on the other. In Bio4Energy's second programme period, 2017-2021, the perspective has been expanded to encompass resource efficiency along the value chain of biorefinery products and calculating the cost of various options for making sure biorefinery operations are sustainable.

    One vision, many partners

    A large number of industrial operators have endorsed Bio4Energy and are part of a Bio4Energy Industrial Network. The scientists cooperate with them to develop advanced biofuels, "green" chemicals or other bio-based products, such as new materials made using nanotechnology. Another strand of work focuses on eliminating noxious emission or undesirable residues from existing industrial processes. For instance, methods are being developed to convert biomass ashes and sludge into renewable energy, liming materials or low-polluting fertilizers. In some cases, high-temperature processes in combination with filters that capture particulate matter and heavy metals will be used to rid the biorefinery process of toxic organic compounds.

    Another promising line of research in Bio4Energy targets the capture and recycling of carbon dioxide (CO2), the international reference for greenhouse gases. New technologies for CO2capture and reuse that rely on catalytic conversion are being invented. When it comes to development, Bio4Energy researchers have realised inventions which has led to new pilot facilities being installed (just off the campus of the lead organisation Umeå University) for the pre-treatment of biomass by roasting (torrefaction), at a BTX Fornax facility. Two other groups have made ample use of Sweden's only demonstration unit for bioethanol production, the Biorefinery Demonstration Plantat Örnsköldsvik, Sweden. Yet others collaborate with Swedish pellet industry, characterising and modulating biomass materials at the Biomass Technology Centrewhich hosts pilot facilities for the separation and fractionation of biomass at SLU Röbäcksdalen, at Umeå, Sweden. Further north, at Piteå, Bio4Energy researchers are an integral part of a team tasked with trialling, perfecting and upscaling production of biofuels made via the gasification route. At the LTU Green Fuelscentre, "ultra" low-polluting dimethyl ether (or bioDME) fuel is made from a residual product of the pulping process, black liquor, using entrained-flow gasification technology. Part of the same industrial site, the RISE Energy Technology Center has facilities for optimising gasification and pyrolysis processes and serves as link between academia and industry.

    A research 'environment'

    Bio4Energy is not only a research programme, but also a research environment. At its core are three Swedish universities recognised as national leaders in education and research on bioenergy, biotechnology and forest management. They are Umeå University, Luleå University of Technologyand the Swedish University of Agricultural Sciences at Umeå. A large number of Sweden-based firms and a handful of innovation and research institutes have signed up to become partners. Of these RISE (groups in the Materials and Bioscience and Bioeconomy branches, respectively) and the ETC Energy Technology Center are founding members of Bio4Energy. RISE Processum and Piteå Science Park, both of which organisations are close to or representing industry, are the Strategic Partners of Bio4Energy. Several other cooperation partners could be mentioned here.

    Moreover, scientific collaboration is underway with research organisations or groups in Europe as well as in the U.S.A., Australia, Canada, China, Korea, Japan, Russia, Taiwan, Kenya, Tanzania, Zimbabwe, South Africa and other countries. The Bio4Energy research programme is committed to the sustainable use of natural resources and aware of the European Union's efforts to combat climate change by lessening the reliance on fossil fuels and increasing the use of renewable energy. In particular, Bio4Energy works to align its practices on advice issued by the European Technology Platforms devoted to forests, plants and biofuels. Since early 2014, Bio4Energy is a member of the European Bio-based Industries' Consortium, which has seen the birth of a Bio-based Industries' Joint Undertaking (BBI JU) as a part of the European Union's Joint Technology Initiatives' process. In Sweden, the programme part of Bio4Energy is a member of BioInnovationa cross-sectoral programme designed to promote bio-based innovationand of the Swedish Centre for Renewable Transportation Fuels.

    Bio4Energy aims to be a driving force for innovation and thereby the creation of small and medium-sized enterprises. It has set up its own Graduate School on the Innovative Use of Biomass so as to provide post-secondary training for a new generation of academic researchers, to develop scientific expertise in bioenergy, bio-based chemicals and, as a separate strand, biotechnology. At Umeå University, a new undergraduate training programme was unveiled at the end of 2013 and is designed to train future engineers in Bioresource Technology.

    Bio4Energy was born in late 2009, when the Swedish government agreed to offer a constellation of 44 mostly Swedish biorefinery researchers its support for developing over five years a Strategic Research Environment, tasked with drawing together some of the best brains in bioenergy and biorefinery research and development, as well as create links and collaboration within the academic cluster and cooperation with industrial actors.

    The government's generous support, topped up with contributions from the member universities and external funds won as a result of it, have allowed Bio4Energy to expand from the initial 44 to 235 researchers*(in March 2014 - and hovering between 235 and 250 members in 2015), originating from a number of countries but affiliated with one or more of Bio4Energy's founding member organisations. In 2009, more than 20 industrial companies pledged their support for the creation of Bio4Energy by signing letters of endorsement.

    For more information: See Bio4Energy's Clean-Tech Article (available also from the drop-down menu of the 'Research' heading) or an article in Swedishby Umeå University Information Services. As of June 2015, Bio4Energy has its own news page in Swedish on the Umeå University website and a programme page on the Luleå University of Technology website.

    Press and mediaare most welcome to contact Bio4Energy Communications by e-mail to: This email address is being protected from spambots. You need JavaScript enabled to view it. or by phone at: +46 90 786 5247 (weekdays).

    *In November 2017 Bio4Energy had approximately 220 researchers.

    --
    Hereunder is the standard sentence which researchers may put towards the end of their scientific articles to acknowledge or thank Bio4Energy for its support:

    We thank Bio4Energy, a Strategic Research Environment appointed by the Swedish government, for supporting this work.
    --

  • Bio4Energy Graduate to Bioethanol Developer SEKAB

    WilfredVermerris MonicaNormark PhotobyAnnaStromMonica Normark, pictured at her thesis defence with Wilfred Vermerris, has taken up a position at Bio4Energy industrial partner SEKAB. Photo by Bio4Energy.Bio4Energy graduate and research engineer This email address is being protected from spambots. You need JavaScript enabled to view it., previously with Bio4Energy’s group of experts on biochemical conversion technologies and industrial biotechnology, has scored a position with bioethanol developer SEKAB in northern Sweden, where she will be working to develop one of the company’s flagship inventions: the CelluAPP™.

    “Monica Normark will be a great asset in our work. The CelluAPP™ makes it possible for companies to turn residual materials into marketable products. It’s a win-win situation for business and the environment”, said SEKAB E-Technology head of biorefinery technology This email address is being protected from spambots. You need JavaScript enabled to view it. in a press release.

    Normark’s previous professional home, professor This email address is being protected from spambots. You need JavaScript enabled to view it.’s group at Umeå University and the R&D platform Bio4Energy Biopolymers and Biochemical Conversion Technologies, have a long history of cooperating with—including handing down new inventions and patents to—SEKAB, which small firm develops bioethanol and “green” chemicals at the Biorefinery Demonstration Plant of the Domsjö industrial cluster, Örnsköldsvik, and is part of the Bio4Energy Industrial Network.
  • BioInnovation General Assembly, Stockholm, Sweden

    BioInnovation General Assembly, Stockholm, Sweden
  • Conditioning with Reducing Agents Shown to Raise Yields in Advanced Biofuel Production

    CM slurry AS231115Carlos Martín and Bio4Energy colleagues have developed a one-step biomass conditioning-and-conversion process which could bring cost-efficiency to cellulosic ethanol production. Photo by Bio4Energy.Bio4Energy researchers have invented a process which could bring greater certainty of cost efficiency to industrial biorefineries that choose to base their operations on lignocellulosic input materials such as wood from spruce or pine trees.

    Currently the U.S.A. and Italy are among few countries in the world to host industrial biorefineries for the production of ethanol based on cellulose via the biochemical conversion route using industrial enzymes and yeast. However, these biorefineries mainly use agricultural residue as feedstock in their operations.

    While advanced bio-based production is seen as a great opportunity in several richly forested countries in the boreal belt, industrial operators there are up against a practical problem. A large part of the Canadian, Swedish and Finnish forest resource is made up of coniferous tree species whose woody composition is highly complex and requires harsh treatment before rendering its cellulose, hemicellulose and lignin components in separate parts, which is a requirement in most bio-based production. This harsh pre-treatment means toxic elements are left in the biomass slurry resulting from the process, whose impact must be reduced for efficiency to be achieved in the conversion step to fuels and chemicals.

  • Dynamic modelling of homogeneously catalysed glycerol hydrochlorination in bubble column reactor

    de Araujo Filho CAI, Wärnå J, Mondal D, Haase S, Eränen K, Mikkola J-P, Salmi T. 2016. Dynamic modelling of homogeneously catalysedglycerol hydrochlorination in bubble column reactor. Chem.Eng.Sci., 149, 277-295
  • EPNOE Polysaccharide Conference, Jena, Germany

    EPNOE International Polysaccharide Conference

    Who to contact

    Conventus Congressmanagement & Marketing GmbH Carl-Pulfrich-Straße 1 07745 Jena, Germany www.conventus.de

    Project team Ann-Kathrin Schulte Phone +49 3641 31 16-363 Fax +49 3641 31 16-243 

    Registration Mandy Wagner Phone +49 3641 31 16-160

    Abstracts Stefan Regge Phone +49 3641 31 16-161

  • European Biomass Conference & Exhibition, Amsterdam, the Netherlands

    During the conference, Bio4Energy researcher Carlos Martín will be giving a talk entitled, Evaluation of the potential of cassava stems for ethanol production.
  • European Chemistry Congress, Rome, Italy

    Euro Chemistry 2016 is a specially designed cluster conference with a
    theme "Exploring recent advances in chemistry, related fields and
    applications" which covers almost all aspect and fields of Chemistry.


    Abstract submission: http://chemistry.conferenceseries.com/europe/abstract-submission.php 
    on or before 27 March 2016.
  • Gasification 2017, Helsinki, Finland

    ACI’s 6th Annual Gasification Summit, taking place on 15-16 March 2017 in Helsinki, Finland. The conference will comprise two days of formal presentations, interactive roundtable discussions and excellent networking opportunities. The event will be providing an ideal setting to convene with your peers to discuss both current operational & future planned gasification plants, end product markets, potential barriers & support policies as well as project economics & finance.

    Agenda Committee:
    • Thomas von Kossak, Shell
    • Alison Kerester, The Gasification And Syngas Technologies Council
    • Juhani Isaksson, Valmet
    • Reinhard Rauch, Bioenergy 2020+
    • Christiaan Van Der Meijden, Biomass Energy Engineering
    • Chris Higman, Higman Consulting GmbH
    • Silvio Arienti, Amec Foster Wheeler
    • Berend Vreugdenhil, ‎Innovation Manager Gasification, ECN
    Site Visit:

    Exclusive Lahti Energy’s Kymijärvi II power plant Site Visit – Tuesday 14th March 2017

    During the afternoon of 14th of March 2017 up to 40 conference attendees will receive a unique opportunity to visit Lahti Energy’s Kymijärvi II power plant. Kymijärvi II is the world’s first gasification plant that utilizes solid recovered fuel (SRF). At the 160 MW plant, waste-derived fuel is gasified, the gas is cooled down and cleaned, and the clean gas is then burned in the boiler.

    There is no extra charge to attend the site visit, but spaces are limited and allocated on a first come first served basis. Please register your attendance for the site visit when booking for the conference.
  • Green conversion of municipal solid wastes into fuels and chemicals

    Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P. 2017. Green conversion of municipal solid wastes into fuels and chemicals. Electronic Journal of Biotechnology. 26:69-83, March
  • International Conference on Renewable Resources & Biorefineries, Wroclaw, Poland

    13th International Conference on Renewable Resources & Biorefineries
  • Problem-solving Studies on Biomass Gasification, Waste Water Treatment Enabled by VR Grants

    gallery thumbnailsBio4Energy researchers won funds for water treatment projects. Photo by courtesy of FDP.Bio4Energy researchers have won funds for carrying out scientific studies on reducing soot formation in biomass gasification for making biofuels, as well as two projects on water purification in developing countries. The prestigious Swedish Research Council(VR) announced a number of decisions on research funding this week, with the grants to Bio4Energy's researchers corresponding to the 'Natural and Engineering Sciences' and 'Development Research' categories. Bio4Energy PIs This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it. and This email address is being protected from spambots. You need JavaScript enabled to view it. were the three happy recipients.

    "It's very good. I would like to develop better [biomass] gasification technology", said Umeki who is an associate professor at the Luleå University of Technology (LTU) in northern Sweden, who received funding for the project Chemical Interaction of Closely Located Reactive Particles in Gas Flow.

    "We are going to develop tools to optimise gasifiers in industrial scale conditions and a new model that will assimilate [or mimic] the gasification process" more adequately than current models, he explained.
  • Projects on Next Generation Bio-based Materials, Processes to Start Next Month

    VR grants 21117Bio4Energy researchers will kick off three new projects next month designed, respectively, to make carbonised lignin materials, and chemicals from carbon dioxide and electricity, as well as to create knowledge on nutrient interactions with heavy metal content in biomass ash used as fertilizer.

    This week, the prestigious Swedish Research Councilannounced its decision fund them, along with 322 other top-of-the-line fundamental research projects nationally, on the back of its annual call for proposals on Science and Technology.

    All three projects run over four years. Each are at the leading-edge of bio-based research, expected to pave the way for industrial innovation. In Bio4Energy, they are under the supervision of scientists on two different R&D platforms: Bio4Energy Biopolymers and Biochemical Conversion Technologies and Bio4Energy Environment and Nutrient Recycling.

  • Renewable & Bio-based Chemicals Summit, Chicago, U.S.A.

  • Report on New Method to Map Biomass Properties Receives Praise, but Author Warns Large-scale Testing, Industry Cooperation, Needed

    Mikael Thyrel Photo by Anna StromBio4Energy reseracher Mikael Thyrel has been acknowledged for his work by the Royal Swedish Academy of Agriculture and Forestry. Photo by Anna Strom©.The composition of different types of biomass materials varies widely and may even vary within, say, a single species of wood. This is generally seen as an impediment to the large-scale roll out of biorefinery—meaning industrial operations designed to make a cascade of bio-based products such as biofuels, "green" chemicals or bio-based starting materials for products—since each biorefinery process may have to be adapted to biomass materials from a single source. This is especially true for lignocellulosic biomass, meaning biomass from wood or inedible parts of plants.

    Thus, knowledge about quick and easy ways to judge the properties of each type of biomass is high in demand. Bio4Energy postdoctoral fellow This email address is being protected from spambots. You need JavaScript enabled to view it. has focused his research on such methods, in the pre-treatment step of the biomass intended for use in biorefinery processes. Using sophisticated X-ray fluorescence and near-infrared spectroscopy, he found that the two techniques may be used to gauge the amount of non-desirable ash-forming elements or contaminants and to single out wood chips for their content of value-added extractive substances, respectively.

    While the conclusions of Thyrel's work so far are based on testing on the laboratory scale, this has not stopped the Royal Swedish Academy of Agriculture and Forestry (KSLA) deeming it useful and novel enough to grant him an award for "best PhD thesis 2016" for the report in which he sums it all up:  Spectroscopic Characterisation of Lignocellulosic Biomass. Thyrel is to receive a diploma from the hands of the Swedish prince Carl Philip, 28 January in Stockholm and has received a personal grant.

    "As the [biorefinery] industry is trying to start up new methods are needed for the characterisation of biomass. Biomass is heterogeneous in nature. Especially targeted processes for producing chemicals are rather sensitive [to impurities in the biomass]. One batch of wood chips does not look the same as the other. We have to find a way to characterise them so that the polluting elements can be removed or handled", said Thyrel, who works at the Department of Forest Biomaterials and Technology of the Swedish University of Agricultural Sciences.
  • Seminar on Bio-based Feedstock: 'Make No Mistake, There is Still Momentum for Building the Bioeconomy'

    Is the efficient and sustainable biorefinery of the future challenged by the low price of oil and gas and the lack of a political framework that encourages bio-based production in the long term? Yes. Have actors in the sector shut up shop while waiting for conditions to be right for launching the bioeconomy? Not at all.

    Judging from developments in Sweden, a precursor country in terms of biorefinery development based on woody materials and organic waste, great strides are being made in industry and academia to pave the way for a transition from an economy heavily reliant fossil fuels and materials based on petrochemicals, towards a bioeconomy. A few such developments were highlighted yesterday at a seminar at Umeå, in northern Sweden, on Feedstock for Sustainable Biofuel Production, by the Swedish Knowledge Centre for Renewable Transportation Fuels (f3 Centre), the research environment Bio4Energy and the Swedish University of Agricultural Sciences

    Anders-Hultgren-SCA
    Bioen-100-yrs-FF
    Bioen-use-SE
    Constraints-drivers
    Future-FF
    Johanna-Mossberg-f3
    MagnusHertzberg_SweTreeTechnologies
    Phiip-Peck-LU
    SCA-prod-plans
    STT-Field-Trials
    01/10 
    start stop bwd fwd

  • Symposium on Biotechnology applied to Lignocelluloses, Madrid, Spain

    4th Symposium on Biotechnology applied to Lignocelluloses - LignoBiotech IV, in Madrid, Spain
  • Symposium on Biotechnology for Fuels and Chemicals, Baltimore, MD, U.S.A.

    38th SBFC (Symposium on Biotechnology for Fuels and Chemicals), April 25-28, 2016, Baltimore, MD. http://www.simbhq.org/sbfc/  
  • Systems' Perspectives on Bioresources

    Bio4Energy studentsltu AnnaStromExtent and credits: 7.5 ECTS             


    Course coordinator: This email address is being protected from spambots. You need JavaScript enabled to view it. 


    Objectives

    On completion of the course, students will:

    • Be able to understand how to apply a systems' perspective on their own research;

    • Have gained insights into the current global energy and environmental challenges; 

    • Have gained insights into the rational of sustainability; 

    • Have awareness of tools and methods used for environmental, technical and economic systems analysis. 

    Dates and locations

    Autumn 2017:

    9-13 October, Luleå, Sweden: Lectures and workshops;

    Followed by independent work on a project assignment.


    Contents

    The course consists of:

    • Lectures (on sustainability issues, systems analysis approaches and tools) and workshops;

    • Lectures on essential subjects for large-scale biorefinery or bioenergy research and;

    • A project assignment, where the students identify suitable systems analysis tools or methods to be applied to their own research. The outcome will be a draft research proposal, a journal or conference manuscript or a chapter of a thesis.

    Application and prerequisites

    To apply for enrolment in Biorefinery Pilot Research, mail to This email address is being protected from spambots. You need JavaScript enabled to view it..

    For enquiries regarding the course content, contact This email address is being protected from spambots. You need JavaScript enabled to view it.

    Late application? Contact This email address is being protected from spambots. You need JavaScript enabled to view it..
  • This Is Bio4Energy

    Bio4Energy wants to thank its members, stakeholders and funders for its five first years of building a research environment that links up key academic and business organisations actively trying to promote biorefinery—the invention and production of advanced biofuels, bio-based chemicals and materials from woody biomass or organic waste.

    To do so, and to spread the word further afield, Bio4Energy would like to show you two short films that are an attempt to summarise who we are and what we do.

    In film one, the Bio4Energy programme manager takes viewers by the hand and describes the fundaments of the research environment. We also step into the working world of three Bio4Energy Research and Development Platforms: Feedstock, Pretreatment and Fractionation, as well as Catalysis and Separation. We visit the scientists’ greenhouse were hybrid aspen plants are grown to make better trees for bio-based production and Sweden's only pilot plant for the roasting of biomass—torrefaction—for the ease of handling and converting woody and starch-based biomass into fuels and chemicals.

    Bio4Energy - A Biorefinery Research Environment from Bio4Energy on Vimeo.


    In film two, we meet the coordinator of the Bio4Energy Graduate School who says students interested in biorefinery based on wood or organic waste will get a "unique" experience in the Bio4Energy Graduate School. We hear about the work on Bio4Energy's "process" platforms: The Bio4Energy Thermochemical and Biochemical Platform, respectively; and tour the thermal conversion whizzes' labs at Umeå University.

    Bio4Energy - Biorefinery Research & Education from Bio4Energy on Vimeo.

    Since June 2015, Bio4Energy has a new page in the Swedish-language section of the Umeå University website. From there, most of Bio4Energy's press releases in Swedish may be accessed. There are also an interview with the Bio4Energy programme manager for the years 2010-2016 and general information about Bio4Energy. An even more recent interviewcan be accessed on page 9 and 10 of the latest issue of Tänk magazine in which This email address is being protected from spambots. You need JavaScript enabled to view it. predicts that societies will have become bio-based in the year of 2065.

    Bio4Energy has gone from being a constellation of 44 enthusiastic researchers in 2009, to becoming a full-blown research environment with about 240 members across three universities, four research institutes and with a network of industrial partners in Sweden and beyond.

    Thank you to our sponsors, members and stakeholders for believing in Bio4Energy!