Umeå University

  • Bio4Energy Steering Group Meeting, by phone

  • Bio4Energy Steering Group Meeting, by phone

    Bio4Energy Steering Group Meeting, by phone
  • Bio4Energy Thesis Defence: Co-firing Complex Biomass in a CFB Boiler, Umeå, Sweden

    PhD student Henrik Hagman will defend his thesis Co-firing Complex Biomass in a CFB Boiler – Ash Transformation, Corrosion Control and Materials Selection.His supervisors have been Dan Boström and Rainer Backman, both PIs in Bio4Energy and professors at Umeå University.

    Opponent will be Lars-Erik Åmand, Högskolan i Borås.

    Time and place: 1 p.m. at Umeå University, Natural Sciences' Building, Room N460.

    All welcome.
  • Bio4Energy Thesis Defence: Mixed Fuels Composed of Household Waste Wood, Umeå, Sweden

  • Bio4Energy Thesis Defence: Mixed fuels composed of household waste, waste wood, Umeå, Sweden

    PhD student Mar Edo Giménez will be defending her thesis Mixed fuels composed of household waste and waste wood - Characterisation, combustion behaviour and potential emissions

    Time and place: 9 a.m. at Umeå University, KBC Building, room KB.E3.03
  • Bio4Energy Thesis Defence: Particle emissions from residential wood and biodiesel combustion, Umeå, Sweden


  • Bio4Energy Thesis Defence: Pretreatment and enzymatic saccharification of lignocellulose, Umeå, Sweden

    Full title: Pretreatment and enzymatic saccharification of lignocellulose: formation and effects of pseudolignin
  • Bio4Energy Thesis Defence: Three-dimensional Structured Carbon Foams, Umeå, Sweden

    Bio4Energy PhD student at Umeå University Tung Ngoc Pham will be defending his thesis Three-dimensional structured carbon foam: Synthesis and Applications Monday 14 November at 1 p.m. in room KB.E3.01, KBC Building of Umeå University, Umeå, Sweden. 
  • Bio4Energy Workshop on Max IV, Umeå, Sweden

  • Biorefinery Pilot Research

    Biorefinery Pilot Research participantsExtent and credits: 7.5 ECTS                            

    Course coordinator: This email address is being protected from spambots. You need JavaScript enabled to view it.


    Objectives

    On completion of the course, students will:

    • Be able to describe the biorefinery technologies represented in pilot scale facilities within the Bio4Energy infrastructure and know how to get access to them;

    • Be able to explain and discuss models for the roles of academia and functions of technical innovation systems and to critically evaluate real research facility cases based on these models;

    • Be aware of essentials regarding sampling, building of large-scale experimental equipment, fund raising, and intellectual property rights and;

    • Have gained access to interdisciplinary exchange of knowledge and ideas through networking activities.


    Dates and locations

    Autumn 2018

    Piteå, Sweden — 27-29 August 2018

    • RISE Energy Technology Centre and Piteå Science Park


    Örnsköldsvik and Umeå, Sweden — 17-21 September

    • Örnsköldsvik: Processum Pilot Park, MoRe Research pilots and Biorefinery Demonstration Plant

    • Umeå: Torrefaction Pilot (Campus Umeå) and Algae Pilot at Dåva/Umeå Energi (local energy utility)


    Umeå, Sweden — 22-23 October

    Presentation of case studies and final discussion/workshop.


    Contents

    The course consists of:

    • On-site demonstration of equipment and technology, lectures and laboratory work;

    • Lectures on essential subjects for large-scale biorefinery or bioenergy research and;

    • A project assignment, typically a case study of a technical innovation system at one of the pilot plants in the cluster.


    Application and prerequisites

    To apply for enrolment in Biorefinery Pilot Research, please click on the link 'Apply Now', at the top of this page. The deadline for applications is 10 August 2018.

    This course is recommended for students with an interest in biorefinery at the PhD or postdoctoral level, as well as industry representatives who wish to learn about research and innovation as carried out at the biorefinery-related pilot and demonstration units lining the east coast of Northern Sweden.

    For enquiries regarding the course content, contact This email address is being protected from spambots. You need JavaScript enabled to view it.

  • Clean-burning Cooking Solutions, Electricity, Being Developed for Africa

    The world needs clean-burning stoves for use in countryside households in third world, the Umeå Renewable Energy Meeting (UREM) 2016heard today. Many such households, for instance in Sub-Saharan Africa, rely on burning of untreated wood or agricultural residues inside the home and in simple appliances with few or no checks on polluting emissions.

    UREM-2016-Feb24-1
    UREM-2016-Feb24-10
    UREM-2016-Feb24-2
    UREM-2016-Feb24-3
    UREM-2016-Feb24-4
    UREM-2016-Feb24-5
    UREM-2016-Feb24-6
    UREM-2016-Feb24-7
    UREM-2016-Feb24-8
    UREM-2016-Feb24-9
    01/10 
    start stop bwd fwd

    Although international initiatives such as the Global Cookstove Alliance have made great strides in the right direction, the effect of emissions on human health of particulate matter and soot are still not well understood, Bio4Energy researcher This email address is being protected from spambots. You need JavaScript enabled to view it. told the UREM conference. Boman leads a cross-disciplinary project in which Bio4Energy researchers from Umeå University and the Swedish University of Agricultural Sciences collaborate with the Stockholm Environment Institute and African non-governmental organisations, of which the World Agroforestry Centre in Kenya, to evaluate current so-called clean-burning cookstoves and develop medium-sized facilities for electricity production in the Kenyan countryside.

  • Clean-burning Cookstoves, Technology for Local Electricity Production to Be Developed for Africa

    CB cookstoves GroupA project for Africa: Christoffer Boman and colleagues will develop a clean-burning cookstove and propose solutions for local electricity production via biomass gasification. Photos by courtesy of Christoffer Boman.Development of clean-burning technology for household cooking and medium-scale electricity production in Sub-Saharan Africa is the focus of a new multiannual project by Bio4Energy researchers in collaboration with African actors, the Swedish Environment Institute (SEI) and the Swedish University of Agricultural Sciences.

    As the researchers acknowledge in an application for funds to the Swedish Research Council Formas, which has now been granted, almost one fifth of the world population still lacks access to electricity, according to the International Energy Agency. Moreover, indoor air pollution caused by biomass burning for cooking and heating either using poor appliances or simply building a fire indoors cause about two million deaths per year in Southeast Asia and Africa.

    While great strides have been made by high-profile initiatives such as the Global Alliance for Clean Cookstoves, "many uncertainties still exist regarding the performance of different cooking solutions… [and] emissions from these systems and the relation to air pollution and health effects need to be better elucidated", according to the project application.
  • Conditioning with Reducing Agents Shown to Raise Yields in Advanced Biofuel Production

    CM slurry AS231115Carlos Martín and Bio4Energy colleagues have developed a one-step biomass conditioning-and-conversion process which could bring cost-efficiency to cellulosic ethanol production. Photo by Bio4Energy.Bio4Energy researchers have invented a process which could bring greater certainty of cost efficiency to industrial biorefineries that choose to base their operations on lignocellulosic input materials such as wood from spruce or pine trees.

    Currently the U.S.A. and Italy are among few countries in the world to host industrial biorefineries for the production of ethanol based on cellulose via the biochemical conversion route using industrial enzymes and yeast. However, these biorefineries mainly use agricultural residue as feedstock in their operations.

    While advanced bio-based production is seen as a great opportunity in several richly forested countries in the boreal belt, industrial operators there are up against a practical problem. A large part of the Canadian, Swedish and Finnish forest resource is made up of coniferous tree species whose woody composition is highly complex and requires harsh treatment before rendering its cellulose, hemicellulose and lignin components in separate parts, which is a requirement in most bio-based production. This harsh pre-treatment means toxic elements are left in the biomass slurry resulting from the process, whose impact must be reduced for efficiency to be achieved in the conversion step to fuels and chemicals.

  • Discovery of Mechanism behind Organisation of Plant Cell Wall Raises Hopes for Biorefinery Development

    EP RES break 17915Bio4Energy researchers Edouard Pesquet and Delphine Ménard in the laboratory at the Umeå Plant Science Centre in Sweden, checking on some of the proteins they found. Photo by Bio4Energy.

    Plant biologists have long tried to come up with a method for making trees produce large amounts of easily extractable biomass for making renewable products such as biofuels and "green" chemicals. Indeed, international conferences such as Lignin 2014 have seen scores or well-respected scientistsbiologists and chemists alikebrood the reasons why successful attempts to increase biomass production have led to the making of sample plants whose stems and branches sag in sad poses or to increased difficulty at the steps of extracting and separating the main components of wood: cellulose, hemicellulose and lignin.

    Whereas most of these attempts were aimed at trying to increase the production of biomass within the plant cell, a team of scientists based in Sweden and the UK came up with the idea to try to lay bare the processes responsible for the organisation of the cells in the plant's secondary cell wall. Thus the focus is no longer on maximising biomass production, but rather on finding out the exact way in which a plant goes about building its cell walls from within and who is responsible for doing what in that process. The researchers found as many as 605 proteins hard at work, performing specific and mostly non-overlapping tasks to control aspects of the cell wall's organisation such as its thickness, homogeneity, cortical position and patterns.

    "We tried to unravel the processes organising the cell. [What we found is that] the cell wall needs to be placed and organised specifically for wood cells to work. We have identified genes or proteins implicated in the control of this mechanism", said This email address is being protected from spambots. You need JavaScript enabled to view it., the Bio4Energy researcher who led the international study published in the well-respected ThePlant Cell scientific journal.

  • Dynamic modelling of homogeneously catalysed glycerol hydrochlorination in bubble column reactor

    de Araujo Filho CAI, Wärnå J, Mondal D, Haase S, Eränen K, Mikkola J-P, Salmi T. 2016. Dynamic modelling of homogeneously catalysedglycerol hydrochlorination in bubble column reactor. Chem.Eng.Sci., 149, 277-295
  • Environmental Chemist Wins 'Collaboration Prize'

    Mats Tysklind 516Environmental chemist Mats Tysklind has won an award for having cooperated with partners in academia, industry and with public bodies. Photo by courtesy of Umeå University.A new professor in Bio4Energy since the start of its second programme period 1 January 2016, environmental chemist This email address is being protected from spambots. You need JavaScript enabled to view it. has started his mandate by winning a prize for having cooperated successfully with a number of organisations. It is awarded by the Faculty of Science and Technology at his home institution, Umeå University (UmU), and will be handed to him at award ceremony 21 May. Two days prior Tysklind will be giving a public lecture entitled Samverkan – avgörande för utveckling av smart miljöteknik.

    Since cooperation across organisations and disciplinary borders is what Bio4Energy is about, and since Tysklind is part of its new research platform Bio4Energy System Analysis and Bioeconomy, which is task is precisely to provide a system's perspective on processes and products that are developed in the cluster, the award is felt to be timely.

    "During many years we have been making an effort to cooperate widely with different organisations in society. Now that one thinks about it they are incredibly many. Lately we are [reaching out specifically to] organisations that promote sustainable development and green technology and environmental technology. It has resulted in [the university's] investing in a new area of research on Green Technology and Environmental Economics", Tysklind said when asked why he thought he had received the prize.

  • Events' Archives

  • F1000 Recommends Bio4Energy Tool for Cell-trait Quantification

    Urs Fischer Photo by Anna StromUrs Fischer talks up some hybrid aspen plants in a greenhouse at the Umeå Plant Science Centre at Umeå University in Sweden. Photo by Anna Strom©.

    A study by Bio4Energy researchers and partners was recommended by F1000 faculty as an important article in biology. The Faculty of 1000, or F1000, is an international group of academics—faculty members—who have tasked themselves with identifying and recommending the best research output in biology and medicine when it comes to peer-reviewed scientific articles.

    The study by This email address is being protected from spambots. You need JavaScript enabled to view it.and This email address is being protected from spambots. You need JavaScript enabled to view it. and others gives an overview of a new package of analytical tools for quantifying large amounts of cellular traits, called phenotypes, in plants such as trees. Using the tools, researchers will be able to extract quantitative data from raw images obtained using state-of-the-art fluorescent microscopy. This has not previously been possible and the researchers expect this feature to speed up the process where large amounts of quantitative information need to be assessed. Hall and Fischer are part of the research platform Bio4Energy Feedstockand affiliated with Umeå University and the Swedish University of Agricultural Sciences, respectively.

    The F1000 faculty member making the recommendation, David G. Oppenheimer of the University of Florida at Gainsville, U.S.A. stated in his motivation:

    "The authors' method allows segmentation of images obtained by laser scanning confocal microscopy (or other optical sectioning methods of fluorescently labelled material) followed by assignment of cell types using the Random Forest machine learning algorithm.... I expect that this package will be useful for large-scale quantitative trait loci mapping projects or any projects that require quantification of cellular phenotypes for thousands of individuals."

  • Fascinating Plants Day, Umeå, Sweden

    Fascinerande växter – seminariedag om växtforskning i Umeå

    Forskare från Umeå Plant Science Center – Umeå universitet och SLU – berättar om sin forskning. UR Samtiden är på plats och filmar för Kunskapskanalen.

    Populärvetenskapliga föredrag på temat fascinerande växter.

    Kaffe och te i pausen.                             

    Alla är välkomna!

    Program: Torsdagen den 9 mars

    P-O Bäckströms sal (aulan), Sveriges lantbruksuniversitet (SLU)

    12.00 Välkommen! Natalie von der Lehr(moderator, frilansjournalist)

    12.05 Hur vet träden att det är höst? (svensk presentation) Stefan Jansson (professor, Umeå universitet) På hösten får träden sina höstfärger och bladen faller till slut men hur vet träden egentligen att hösten kommer? Professor Stefan Jansson vid Umeå universitet förklarar hur trädens kalender fungerar och varför bladen blir gula på hösten.

    12.30 How do plants make plumbing pipes from cells? (engelsk presentation) Sacha Escamez (postdoktor, Umeå universitet) Sacha Escamez will explain how plants utilize some of their cells to build pipe-like structures that allow them draw water and nutrients in the soil in order to distribute it throughout their bodies.

    12.55 Fotosyntesen – ett samarbete mellan cellens energifabriker (svensk presentation) Per Gardeström (professor, Umeå universitet)  Per Gardeström kommer att förklara hur fotosyntesen fungerar för att med hjälp av solljus fixera koldioxid från luften. Han kommer fokusera på samarbetet mellan kloroplaster och mitokondrier som båda är delar av växtcellerna och viktiga för deras energiförsörjning. 

    13.20 Traffic in plant cells – sending cargo the right way (engelsk presentation) Anirban Baral(postdoktor med Rishikesh Bhalerao, SLU) Anirban Baral will explain how different compartments with different functions in a plant cell exchange information and material between each other. He will show with specific examples what happens with the plant when the traffic is not regulated properly. 

    13.45 Chemicals as tools to dissect plants (engelsk presentation) Siamsa Doyle(forskare med Stéphanie Roberts, SLU)  Siamsa Doyle, plant cell biologist, will talk about the use of chemicals that block proteins controlling plant functions. The effects of these chemicals on the plants can tell researchers a lot about the proteins and their roles in plant growth and development. Like this, chemicals can be used to virtually “dissect” plants and learn more about them.

    14.10 Paus och kaffe

    14.40 Getting together: The fungus-root symbiosis in forest tree (engelsk presentation) Judith Felten (universitetslektor, SLU) Judith Felten, group leader at UPSC, will talk about the knowns and unknowns of the fascinating mechanism that allows roots and fungi to form a beneficial relationship (symbiosis). The fungus provides soil-nutrients to the tree and receives photosynthetic sugars from the tree. Like this both partners benefit from each other and stimulate each other’s growth. 

    15.05 Därför är världen grön – om växter och deras försvar (svensk presentation) Benedicte Albrectson(forskare, Umeå universitet) Benedicte Albrectson kommer att tala om hur växter försvarar sig med hjälp av kemiska ämnen. Hon kommer fokusera på en speciell klass av dessa ämnen, som kallas fenoler, och förklara hur hennes forskargrupp analyserar dem. 

    15.30 Framtidens skogsgenetik med gamla fältförsök (svensk presentation) Anders Fries (forskare, SLU)  Anders Fries forskare i skogsgenetik berättar om vad gamla fältförsök har lärt oss om vedegenskaper och vad molekylärgenetiska studier i dem kan lära oss.
  • Green conversion of municipal solid wastes into fuels and chemicals

    Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P. 2017. Green conversion of municipal solid wastes into fuels and chemicals. Electronic Journal of Biotechnology. 26:69-83, March