umu logotyp ENLTU eng blue slu logo rgb web RISE logo

biogas

  • Bio4Energy Part of New Multi-partner Project to Create Biorefinery for Organic Waste

    Bio4EnergyNaserTavajohiLab Bio4Energy2022Naser Tavajohi and his student researchers are part of a new project to create a biorefinery starting from biogas-making operations. Photo by courtesy of Naser Tavajohi (edited by A.S.). is part of a new multi-partner project to create a biorefinery for organic waste—with end products such as bio-based plastics, animal feed, “green” chemicals, biofuels and higher alcohols (Fusel oil)—in a two-step process.

    If successful, the result could become a trendsetter concept for how to create a virtually waste-free system of making the said commodities, but as bio-based alternatives to their current fossil resource-based counterparts.

    Researchers at the University of Borås in Sweden gave birth to the idea that the concept of biogas making could be expanded to deliver much more than just biogas car fuel, which is produced from the fermentation of food and agricultural waste in an oxygen-free environment.  

    In addition to this kind of bacterial break down of organic residues (anaerobic digestion), they want to add two more main processes to reuse all of the contents of the organic waste feedstock. These processes are referred to as 'membrane reactors' and 'biological augmentation', in scientific speak.

    The new concept will be tested at “large-scale” research facilities tied to the University of Borås, according to assistant professor This email address is being protected from spambots. You need JavaScript enabled to view it., who heads up Bio4Energy’s contribution to the project from Umeå University.

    Although Tavajohi could not give an exact figure on the envisioned capacity, the scale would be near or at the level of industrial implementation. Consultants from RISE Research Institutes of Sweden were set to assist the academic researchers in some part of the project, he told Bio4Energy Communications in an online interview.

  • Integrated Biogas, New Material Production Focus of New Project

    Forestry residue Photo by AnnaStromBio4Energy researchers will create processes for integrated biogas production from woody feedstock with lignin removal and re-use in different materials. Photo by Anna Strom.Bio4Energy scientists have set out to create a completely new biorefinery value chain, by marrying the production of methane biogas and bio coal based on the wood polymer lignin, in a multi-annual project run by researchers at Umeå University (UmU), Luleå University of Technology (LTU) and their industrial partners Erebia, Blatraden Miljötekniskt center and the forestry company Sveaskog. The Swedish Research Council Formas granted the project funds under its latest call for research proposals on Research for the Transition to a Bio-based Economy, announced last week.

    Projects by Bio4Energy researchers on the integration of power production with biorefinery operations and finding the best source of wood for the production of nanocellulose also were granted funds in the Bio-based Economy call.

    "We are so very happy to be able to carry out these projects. Ours could not have come about if it weren't for the contacts we have had through Bio4Energy and its Researchers' Meetings", said This email address is being protected from spambots. You need JavaScript enabled to view it., vice programme manager in Bio4Energy and a group leader at the LTU.

    Professor Rova is part of the project Integrated Conversion of Forest Residues into Methane and Carbonised Bio-based Materials (INFORMAT). So are a number of other Bio4Energy researchers and together they will attempt to lay the foundation for a completely new value chain in biorefinery by integrating the production of methane biogas from wood and woody residue with lignin extraction and re-use. That is, the scientists will separate out the lignin part of the wood polymer complex at an early stage of the process and use it to make bio coal by subjecting the lignin fraction to high temperature treatment, using hydrothermal carbonisation technology.